Parallel two-step Runge-Kutta methods

Helmut Podhaisky, podhaisky@mathematik.uni-halle.de

Martin-Luther-University Halle-Wittenberg, Germany

20 July 2006

Outline

Runge-Kutta and multi-step methods

Explicit parallel peer methods

Implicit parallel peer methods

Summary

Explicit Runge–Kutta methods for y' = f(y)classical Runge–Kutta method (1904)

$$Y_{m1} = y_{m-1}$$

$$Y_{m2} = y_{m-1} + \frac{1}{2}hf(Y_{m1})$$

$$Y_{m3} = y_{m-1} + \frac{1}{2}hf(Y_{m2})$$

$$Y_{m4} = y_{m-1} + hf(Y_{m3})$$

$$y_{m} = y_{m-1} + \frac{h}{6}f(Y_{m1}) + \frac{h}{3}f(Y_{m2}) + \frac{h}{3}f(Y_{m3}) + \frac{h}{6}f(Y_{m4})$$

Explicit Runge–Kutta methods for y'	' =	f()	/)		
classical Runge–Kutta method (1904)	Butcher scheme				
$Y_{m1} = y_{m-1}$	0				
$Y_{m2} = y_{m-1} + \frac{1}{2}hf(Y_{m1})$	$\frac{1}{2}$	$\frac{1}{2}$	1		
$Y_{2} = Y_{2} + \frac{1}{2} hf(Y_{2})$	1 2 1	0	$\frac{1}{2}$	1	
$Y_{m3} = y_{m-1} + 2^{m} (Y_{m2})$ $Y_{m3} = y_{m-1} + bf(Y_{m2})$		0 1	1	1	<u> </u>
$h_{m4} - y_{m-1} + m(1_{m3})$	h,	6	3	з h	6
$y_m = y_{m-1} + \frac{1}{6}f(Y_{m1}) + \frac{1}{3}f(Y_{m2}) + \frac{1}{6}f(Y_{m2}) + \frac{1}{6}f(Y_{m2$	$\frac{-1}{3}$	Υ _m 3)+	$\frac{-1}{6}$	(Y _{m4})

▶ the computation is sequential

Explicit Runge–Kutta methods for y	$\mathbf{v}' =$	f(y)	y)			
classical Runge–Kutta method (1904)	Butcher scheme					
$Y_{m1} = y_{m-1}$	0					
$Y_{m2} = Y_{m-1} + \frac{1}{2}hf(Y_{m1})$	$\frac{1}{2}$	$\frac{1}{2}$				
	$\frac{1}{2}$	0	$\frac{1}{2}$			
$Y_{m3} = y_{m-1} + \frac{1}{2}hf(Y_{m2})$	1	0	0	1		
$Y_{m4} = y_{m-1} + hf(Y_{m3})$		$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$	
$y_m = y_{m-1} + \frac{h}{6}f(Y_{m1}) + \frac{h}{3}f(Y_{m2}) + $	$+\frac{h}{3}f($	Y _{m3})+	$\frac{h}{6}f$	(Y_{m4})	ı)

- the computation is sequential
- ► Y_{mk} is not an accurate approximation to y(t_{m-1} + c_kh) leading to complex order conditions
- linear stability can be studied easily
- stepsize changes are trivial

Explicit Runge–Kutta methods, Dormand/Prince (1980)

order 5, much better accuracy than RK4

0						
$\frac{1}{5}$	$\frac{1}{5}$					
$\frac{3}{10}$	$\frac{3}{40}$	$\frac{9}{40}$				
$\frac{4}{5}$	$\frac{44}{45}$	$-\frac{56}{15}$	<u>32</u> 9			
<u>8</u> 9	<u>19372</u> 6561	$-\frac{25360}{2187}$	$\tfrac{64448}{6561}$	$-\frac{212}{729}$		
1	<u>9017</u> 3168	$-\frac{355}{33}$	<u>46732</u> 5247	$\frac{49}{176}$	$-rac{5103}{18656}$	
1	<u>35</u> 384	0	$\frac{500}{1113}$	$\frac{125}{192}$	$-\frac{2187}{6784}$	$\frac{11}{84}$
	$\frac{35}{384}$	0	$\frac{500}{1113}$	$\frac{125}{192}$	$-\frac{2187}{6784}$	$\frac{11}{84}$

- widely used, Matlab: ode45
- not parallelizable

Bashforth and Adams (1883)

explicit multistep methods, e.g. order 4:

$$y^{[m]} = y^{[m-1]} + \frac{h}{24} \left(55f_{m-1} - 59f_{m-2} + 37f_{m-3} - 9f_{m-4} \right)$$

- the computation in sequential
- the order conditions are rather simple, just interpolation
- Inear stability is more difficult to analyze
- implementing a robust variable stepsize-variable order code is quite a challenge, Matlab ode113

Implicit methods

Runge-Kutta methods

- ► low stage order ⇒ order reduction
- ▶ high stage order ⇒ coupled iterations (and a good chance for some parallelization, bottleneck: LU-decomposition of the Jacobian)

Multistep methods

- second Dahlquist barrier: an A-stable method cannot have order p > 2
- not parallelizable

Questions:

- What limitations can be overcome with more general methods? In particular: what about parallelism?
- Is it possible to be competitive in applications?

Explicit parallel peer methods

Idea: re-use stages from the last step

$$Y_m = \begin{bmatrix} Y_{m1} \\ Y_{m2} \\ \vdots \\ Y_{ms} \end{bmatrix}, \quad Y_{mk} = y(t_m + c_k h) + O(h^{p+1})$$

Scheme: A and B full $s \times s$ matrices

$$Y_m = hAf(Y_{m-1}) + BY_{m-1}$$

- the computation is completely parallel
- ▶ the order conditions are simple as long as p ≤ s − 1 (interpolation, B = B(A))
- we want zero-stability with no parasitic roots, $\sigma(B) = \{1, 0\}$
- difficult: optimizing stability and variable stepsize behaviour

Taylor series expansion With $z = h \frac{d}{dt}$, we have $Y_m = \exp(cz)y(t_m)$ and $\exp(cz) = Az \exp((c-1)z) + B \exp((c-1)z) + O(z^{p+1})$

which can be satisfied for *B* easily if p = s - 1.

Taylor series expansion With $z = h \frac{d}{dt}$, we have $Y_m = \exp(cz)y(t_m)$ and $\exp(cz) = Az \exp((c-1)z) + B \exp((c-1)z) + O(z^{p+1})$

which can be satisfied for *B* easily if p = s - 1. ordered by powers of *z*

$$\exp(cz) \sim \begin{bmatrix} 1 & c_1 & \frac{c_1^2}{2} & \dots & \frac{c_1^{s-1}}{s-1!} \\ 1 & c_2 & \frac{c_2^2}{2} & \dots & \frac{c_2^{s-1}}{s-1!} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & c_s & \frac{c_s^2}{2} & \dots & \frac{c_s^{s-1}}{s-1!} \end{bmatrix}$$

Taylor series expansion With $z = h \frac{d}{dt}$, we have $Y_m = \exp(cz)y(t_m)$ and $\exp(cz) = Az \exp((c-1)z) + B \exp((c-1)z) + O(z^{p+1})$

which can be satisfied for *B* easily if p = s - 1. ordered by powers of *z*

$$\exp((c-1)z) \sim \begin{bmatrix} 1 & c_1 - 1 & \frac{(c-1)_1^2}{2} & \dots & \frac{(c_1-1)^{s-1}}{s-1!} \\ 1 & c_2 - 1 & \frac{(c-1)_2^2}{2} & \dots & \frac{(c_2-1)^{s-1}}{s-1!} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & c_s - 1 & \frac{(c-1)_s^2}{2} & \dots & \frac{(c_s-1)^{s-1}}{s-1!} \end{bmatrix}$$

Taylor series expansion With $z = h \frac{d}{dt}$, we have $Y_m = \exp(cz)y(t_m)$ and $\exp(cz) = Az \exp((c-1)z) + B \exp((c-1)z) + O(z^{p+1})$

which can be satisfied for B easily if p = s - 1. ordered by powers of z

$$z \exp((c-1)z) \sim egin{bmatrix} 0 & 1 & c_1 - 1 & \dots & rac{(c_1-1)^{s-2}}{s-2!} \ 0 & 1 & c_2 - 1 & \dots & rac{(c_2-1)^{s-2}}{s-2!} \ dots & do$$

Explicit parallel peer methods, linear stability

Let
$$y' = \lambda y$$
 and $z = h\lambda$.
We obtain

$$Y_m = M(z)Y_{m-1} = (B + zA)Y_{m-1}$$

• M(z) is called stability or amplification matrix.

- > zero stability: B = M(0) must be power-bounded
- stability domain: $\{z : M(z) \text{ is power-bounded}\}$

Explicit parallel peer methods, linear stability

Let
$$y' = \lambda y$$
 and $z = h\lambda$.
We obtain

$$Y_m = M(z)Y_{m-1} = (B + zA)Y_{m-1}$$

M(z) is called stability or amplification matrix.

- ▶ zero stability: B = M(0) must be power-bounded
- stability domain: $\{z : M(z) \text{ is power-bounded}\}$

compute boundary: $M(z)v = \exp(\phi i)v$ leads to generalized EV problem: $zA = (\exp(\phi i)I - B)v$

Explicit parallel peer methods, optimization

inner loop: linear conditions

- order $p \leq s 1$
- ▶ zero-parasitic eigenvalues: Schur-form Q^T B̂Q ist strictly upper triangular,
 Q = (I + S)(I − S)⁻¹ Cayley-transform, S − free skew matrix
- ▶ linear least squares, e.g. $||A||_F$ and $||B||_F$

outer loop: nonlinear conditions

- $\rho(M(z))$, shape of the stability domain
- higher order errors $p \ge s$, super-convergence conditions

After all, the method has to be reformulated for variable stepsizes.

Explicit parallel peer methods, optimization

inner loop: linear conditions

- order $p \leq s 1$
- ▶ zero-parasitic eigenvalues: Schur-form Q^T B̂Q ist strictly upper triangular,
 Q = (I + S)(I − S)⁻¹ Cayley-transform, S − free skew matrix
- ▶ linear least squares, e.g. $||A||_F$ and $||B||_F$

outer loop: nonlinear conditions

- $\rho(M(z))$, shape of the stability domain
- higher order errors $p \ge s$, super-convergence conditions

After all, the method has to be reformulated for variable stepsizes. \Rightarrow work in progress

implicit parallel peer methods

Implicit parallel peer methods

parallel+implicit Y_{mi} depends on $hf(Y_{mi})$ $Y_m = Ghf(Y_m) + hAf(Y_{m-1}) + BY_{m-1}, \quad G = diag(g_1, \dots, g_s)$

stiff accuracy $M(z) = (I - zG)^{-1}(zA + B)$ vanishes for $z \to -\infty$ iff A = 0example: method PP3, 3 stages, order 2 L-stable, stiffly accurate c = (-0.1, 0.7, 1), G = diag(1.7, 0.2670, 0.4454)

Implicit parallel peer methods

parallel+implicit Y_{mi} depends on $hf(Y_{mi})$ $Y_m = Ghf(Y_m) + hAf(Y_{m-1}) + BY_{m-1}, \quad G = diag(g_1, \dots, g_s)$

stiff accuracy
$$M(z) = (I - zG)^{-1}(zA + B)$$
 vanishes for $z \to -\infty$ iff $A = 0$

example: method PP3, 3 stages, order 2
L-stable, stiffly accurate

$$c = (-0.1, 0.7, 1), G = \text{diag}(1.7, 0.2670, 0.4454)$$

parasitic roots: $B = \begin{bmatrix} -0.21 & 6.79 & -5.57 \\ 0.27 & -2.46 & 3.18 \\ 0.31 & -2.99 & 3.68 \end{bmatrix},$
 $\sigma(B) = \{1, -0.0005 \pm 0.2202i\}$ (for constant stepsize)

Implementation

- one Newton iteration per stage, linearly implicit method
- Krylov subspace K := span{b, Tb,..., T^{κ-1}}, with T = f_y Find x̄ for (I − γhT)x = b with x̄ ∈ K and (Ax̄ − b) ⊥ K.
- Fortran 90 using OpenMP for loop parallelization
- experiments on a SunFire (shared memory)
- spatial discretizations with finite differences and finite volumes, respectively

with $0 \le t, x, y \le 1$ and exact solution $\sin(\pi x) \sin(\pi y)(1 + 4xy \sin t)$

with $0 \le t, x, y \le 1$ and exact solution $\sin(\pi x)\sin(\pi y)(1 + 4xy\sin t)$

with $0 \le t, x, y \le 1$ and exact solution $\sin(\pi x)\sin(\pi y)(1 + 4xy\sin t)$

with $0 \le t, x, y \le 1$ and exact solution $\sin(\pi x)\sin(\pi y)(1 + 4xy\sin t)$

Mousseau, Knoll & Rider (2000), Verwer, Hundsdorfer (2003)

$$\begin{split} E_t &= \nabla \cdot (D_r \nabla E) + \sigma (T^4 - E), \quad D_r = (3\sigma + (1/E)|\partial E/\partial x|)^{-1}, \\ T_t &= \nabla \cdot (D_t \nabla T) - \sigma (T^4 - E), \quad D_t = kT^{5/2}, \quad k = 0 \text{ or } k = 0.1 \end{split}$$

Mousseau, Knoll & Rider (2000), Verwer, Hundsdorfer (2003)

$$\begin{split} E_t &= \nabla \cdot (D_r \nabla E) + \sigma (T^4 - E), \quad D_r = (3\sigma + (1/E)|\partial E/\partial x|)^{-1}, \\ T_t &= \nabla \cdot (D_t \nabla T) - \sigma (T^4 - E), \quad D_t = kT^{5/2}, \quad k = 0 \text{ or } k = 0.1 \end{split}$$

Mousseau, Knoll & Rider (2000), Verwer, Hundsdorfer (2003)

$$\begin{split} E_t &= \nabla \cdot (D_r \nabla E) + \sigma (T^4 - E), \quad D_r = (3\sigma + (1/E)|\partial E/\partial x|)^{-1}, \\ T_t &= \nabla \cdot (D_t \nabla T) - \sigma (T^4 - E), \quad D_t = kT^{5/2}, \quad k = 0 \text{ or } k = 0.1 \end{split}$$

Mousseau, Knoll & Rider (2000), Verwer, Hundsdorfer (2003)

$$\begin{split} E_t &= \nabla \cdot (D_r \nabla E) + \sigma (T^4 - E), \quad D_r = (3\sigma + (1/E)|\partial E/\partial x|)^{-1}, \\ T_t &= \nabla \cdot (D_t \nabla T) - \sigma (T^4 - E), \quad D_t = kT^{5/2}, \quad k = 0 \text{ or } k = 0.1 \end{split}$$

Summary

- classical methods cannot be parallelized, we need multi-stage, multi-step methods
- methods with parallel stages scale can be implemented easily on shared memory computers (with, say, 2 to 8 CPUs/cores)
- order conditions can be satisfied by interpolation, however, super-convergence is more difficult to achieve
- the main difficulty lies in finding robust methods with small coefficients and moderate error constants
- sequential general linear methods are worth to be studied, too John Butcher (NZ), Adrian Hill (UK), Caren Tischendorf (Matheon/Colone), group in Halle, ...